Method of Initial Rates

For problems 1-5 find the rate law for the reaction using the concentration/rate data. Determine the value of the rate constant along with the units.

1.
$$H_2O_2 + 2HI \rightarrow 2H_2O + I_2$$

Trial	$[H_2O_2]$	[HI]	rate (mol/L/sec)
1	0.10 M	0.10 M	0.0076
2	0.10 M	0.20 M	0.0152
3	0.20 M	0.10 M	0.0152

2.
$$H_2 + I_2 \rightarrow 2HI$$

2. $I_2 = I_2$

Trial $I_2 = I_2$

1.0 mol/L 1.0 mol/L 0.20

2. 1.0 2.0 0.40

3. 2.0 0.80

RATE = K[NOz][Fz]
$$K = 1.0 \times 10^{-4} \frac{M}{\text{min}} = 1.0 \times 10^{-4} \frac{dm^3}{\text{mol-min}}$$

0.10M . 0.10M . (0.10M

4. $2NO + Br_2 \rightarrow 2NOBr$

Trial	[NO]	[Br ₂]	rate (mol/L	/hr) RAT	E = K [NO] 2 [Bra] 1.
1	1.0 mol/L	1.0 mol/L			
2	2.0	1.0	5.20×10^{-3}	>8x's	WE KNOW NO is
3	4.0	2.0	4.16×10^{-2}	70.0	. 2ng order so that's
K=	1.30×10-3M	/hr = [1	30 x 10 ⁻³ dn	n? mol. 3 -1	4 OF THE 8 INCREASE. 4 x ? = 8 ?= 2 B = 1
5.	$ClO_3^- + 9l^- + 6H^+ -$		- 2H ₂ O	2=8	is due to Brz. Since Brz MOLARITY
Trial	[ClO ₃ -]	[I-]	[H ⁺]	rate	DOUBLED, 4×2=8
1	0.10 M	0.10 M	0.10 M	X	
2	0.10	0.20	0.10	2X P	ATE = K[COS][I][H]2
3	0.20	0.20	0.10	4X	110 - 112 - 0,00 - 121 - 1
4	0.20	0.20	0.20	16X	

Given the rate law provided, predict the effect on the initial rate of the following changes in the conditions (temperature, concentration, volume)

- Nitrogen monoxide gas and hydrogen gas react according to the rate law Rate = $k[NO]^2[H_2]$. How does the rate change if:
 - a. the concentration of hydrogen is doubled. DoubleS
 - b. the concentration of nitrogen monoxide is doubled. HX15
 - c. the concentration of hydrogen is cut in half. 1 2x's
 - d. the volume of the container is cut in half. M Doubles for Both . 14 x's 12x's = 8xs
 - e. the volume of the container is doubled. M IN HALF $\sqrt{4x}$'s $\sqrt{2x}$'s = $\sqrt{6}$ f. the temperature is increased. KT, RATET $\sqrt{4x}$'s double for every look.
 - g. the concentration of nitrogen monoxide is doubled while the concentration
 - of hydrogen is cut in half. $14x^2$ $\sqrt{0.5x^2}$ = $12x^2$ h. the concentration of hydrogen is doubled while the concentration of
 - h. the concentration of hydrogen is doubled while the concentration of nitrogen monoxide is cut in half. $\sqrt{0.25x}$ 2x s = $\sqrt{0.50}$
- 7. The rate law of a particular reaction between gases X, Y and Z is found to be Rate = $k[X]^0[Y]^2[Z]$. How does the initial rate change if:
 - a. the concentration of X is doubled. NO CHANGE

 - c. the concentration of Z is quadrupled. QUADRUPLE
 - d. the volume of the container is cut in half. M Doubles 4x's 2x's = 1 8x's

 e. the volume of the container is doubled. M IN HAIP V 4x's V2x's = 1 8x's

 - g. the concentration of X is quadrupled while the concentration of Y and Z are doubled. $\uparrow 4x^{1}S \cdot \uparrow 2x^{1}S = \uparrow 8x^{1}S$
 - h. the concentration of Z is cut in half while the concentration of Y is doubled. \$\div 5 \cdot 74x\$
 - i. the concentration of Y and Z are tripled while the concentration of X is cut in thirds. $\uparrow 9x$ $\downarrow 5$ $\uparrow 3x$ $\downarrow 5$ $\uparrow 27x$ $\downarrow 5$